

OVERVIEW OF SIMULIA OPERA 2022

Looking toward 2023 Dr Ben Pine and Opera Team

OVERVIEW

Introduction

Opera Solvers

Functional Material Properties

Common Installer for CST Studio Suite® and Opera®

New Workflow for Magnetostatic Analyses

Case Studies

INTRODUCTION

THE DASSAULT SYSTEMES BRANDS

OPERA

- Opera is a Finite Element Analysis package
 - 2D and/or 3D
 - Multiphysics including:
 - Electromagnetics
 - Space Charge
 - Stress
 - Thermal
- Developed for:
 - Accuracy
- Capability
- Reliability
- Speed

5 SIMULIA

- Ease-of-use
- Sold direct and by a network of distributors & resellers

© Dassault Systèmes | Confidential Information |

| ref.: 3DS_Document_2021

OPERA CAPABILITIES SUMMARY

OPERA SOLVERS

LOW-FREQUENCY ELECTROMAGNETICS

- Electrostatics
- Magnetostatics
- Dynamic Electromagnetics
 - Harmonic
 - Velocity
 - Transient
- with Motion
 - Rotational
 - Linear

8 SIMULIA

ref.: 3DS_Document_2021

HIGH-FREQUENCY ELECTROMAGNETICS

- Full-wave solver:
 - Modal HF (Eigenvalue analysis)
 - Resonant frequencies and mode structures in cavities
 - Harmonic HF (steady state field solution)
 - \circ $\;$ Wave propagation in closed and open structures $\;$
- Proven in:

-

- Particle Accelerators (coupled-cavity resonators)
 - Microwave feed systems (splitters/combiners)
- Multiphysics-capable for heating/deformed cavities

ref.: 3DS_Document_2021

CHARGED PARTICLES

- Self-consistent particle trajectory simulation in combined fields
 - Accounts for space charge effects
 - Relativistically corrected
- Provides primary and secondary emission models
- Allows full range of interactions
 - Particle-field

-

- Particle-particle
- Particle-surface
- Multiphysics beam-heating

H⁻, H and proton beams through ISIS injection magnets © Bryan Jones, Steve Jago, STFC, 2020

THERMAL SOLVER

- Static & Transient Thermal Solver •
- Multiphysics ٠
 - Automated
 - Manual -

STRUCTURAL SOLVERS

- Static & Eigenvalue Structural Solver
- Multiphysics
 - Automated
 - Manual

FUNCTIONAL MATERIAL PROPERTIES

QUENCH

- Close-coupled iterative finite element method to simulate the transient thermal behaviour of superconducting magnets.
- Developed in collaboration with industry
- Model includes:
 - Superconducting coils
 - Associated structures (formers)
 - Protection circuit
 - Multi-Physics simulation
 - Transient thermal
 - Coupled EM analysis
 - Circuit Equations

S SIMULIA

Use Anisotropic mesh to match thermal conductivities

ref.: 3DS_Document_2021

MATERIAL DATA FOR QUENCH ANALYSIS (1/2)

- Coil geometry
- Coil wire: cross section, number of turns, etc
- Circuit
- Material properties
 - Anisotropic nonlinear thermal conductivity
 - Nonlinear specific heat
 - Material density
 - (Nonlinear) electrical conductivity
 - Critical current

5S SIMULIA

- Material properties are homogenized values
 - As measured for wire or coil
 - Calculated from constituent material curves and volume fractions)

MATERIAL DATA FOR QUENCH ANALYSIS (2/2)

THERMAL CONDUCTIVITY MODELS

- Thermal conductivity in the conductors is highly anisotropic
- This can be captured using Opera in one of two ways:
 - Anisotropic thermal conductivity
 - Bulk material properties are calculated for the conductor from the fractions of superconducting and normal materials
 - Along with the resin and insulator separating the wires
 - Appropriate functions are used for each of the three conductor directions
 - In Opera the conductor defined Z direction is automatically the direction of current flow
 - Isotropic thermal conductivity

5 SIMULIA

- A single value for the thermal conductivity along the conductor is used
- The thermal conductivity in the cross-section of the conductor is instead represented by partitioning the conductor using discrete surfaces
- Thermal contact boundary conditions are used to control heat flow through the surfaces

Set Quench Mater	ial Properties	?
Aluminium	Thermal conductivity	
coil1	X Bulk_Kappa_r(#maxT)	W m ⁻¹ K
coil2 Insulator	Y Bulk_Kappa_z(#maxT)	W m ⁻¹ K
	Anisotropic Z Cu_Kappa(#maxT)*#CuFac	W m ⁻¹ K
	Transient thermal properties	
	Specific heat capacity #BulkCp	J kg⁻¹ K
	Density #BulkDen	kg m
	Wire material properties of superconductor	
	Elec. conductivity of wire Cu Sigma(#maxT)*#CuFac	Sm
	Area of wire cross section 6.0E-07	n
	Critical current NbTi_1c(#maxT;B)*6E-3*#NbTiFac	
	Permeability options	
	Relative permeability and coercivity	
	livoninear	
	✓ Isotropic Mu 1.0 Hc 0.0	A m ⁻¹
	Packed	
	Anisotropic	
SI units	~	
Apply	OK Cancel Set to air	Delete

MAGNETIZATION

- Material properties can be single datum points, or any property can be defined as dependent on other fields using multi-variable tables and functions
- Hysteresis & Demagnetisation can be modelled

18

S SIMULIA

COMMON INSTALLER FOR CST STUDIO SUITE® AND OPERA®

COMMON INSTALLER FOR CST STUDIO SUITE[®] AND OPERA[®] Continuing the integration of the SIMULIA Electromagnetic solution for Low Frequency

COMMON INSTALLER FOR CST STUDIO SUITE® AND OPERA®

SIMULIA Electromagnetics solution

Common license scheme Opera and CST Studio Suite

enses available on remote server "2	7006@ag-pv	d-license(1.ux.dsone.	3ds.com":	Connect to:
T STUDIO SUITE	Total	Active	Version	Expiry Date	Local Machine
rontend	200	2	2023.0626	26-jun-2023	
imulation Process	200	2	2023.0626	26-jun-2023	Remote Server
olver - Time Domain	200	0	2023.0626	26-jun-2023	
olver - Frequency Domain	200	0	2023.0626	26-jun-2023	
olver - Eigenmode	200	0	2023.0626	26-jun-2023	
olver - Integral Equation	200	0	2023.0626	26-jun-2023	Refresh
olver - Multilayer	200	0	2023.0626	26-jun-2023	
olver - Asymptotic	200	0	2023.0626	26-jun-2023	A ative Linearen
olver - Printed Circuit Board	200	0	2023.0626	26-jun-2023	Acuve Licenses
iolver - Rule Check EMC	200	0	2023.0626	26-jun-2023	
olver - Rule Check SI	200	0	2023.0626	26-jun-2023	
olver - Rule Check	200	0	2023.0626	26-jun-2023	Local operations:
olver - Cable Harness	200	0	2023.0626	26-jun-2023	
olver - Static	200	0	2023.0626	26-jun-2023	Start Service
olver - Low Frequency	200	0	2023.0626	26-jun-2023	
olver - Tracking	200	0	2023.0626	26-jun-2023	Chan Comilan
olver - Wakefield	200	0	2023.0626	26-jun-2023	Stop Service
olver - Particle In Cell	200	0	2023.0626	26-jun-2023	
olver - Thermal	200	0	2023.0626	26-jun-2023	New License File
olver - Structural Mechanics	200	0	2023.0626	26-jun-2023	
olver - Circuit Simulator	200	0	2023.0626	26-jun-2023	Show Log File
Optimizer	200	0	2023.0626	26-jun-2023	
cceleration Token	100	3	2023.0626	26-jun-2023	Save Status Report
Aulti-Platform Upgrade	200	0	2023.0626	26-jun-2023 *	/

Single installer package and installation location

WINDOWS (C:) > Program Files (x86) > CST Studio Suite 2023 > Name Date modified Туре Size 05/08/2022 12:28 File folder Imports 05/08/2022 12:25 Java File folder 09/08/2022 12:44 File folder Library License Manager 24/08/2022 11:23 File folder 24/08/2022 11:23 File folder Licenses Modelica 05/08/2022 12:28 File folder MPI 05/08/2022 12:25 File folder Online Help 24/08/2022 11:23 File folder OpenAccess 05/08/2022 12:25 File folder 05/08/2022 12:28 File folder Opera Patches 25/08/2022 11:52 File folder Plugins 05/08/2022 12:28 File folder ResultReaderDLL 05/08/2022 12:28 File folder Sentinel-Drivers 05/08/2022 12:25 File folder SPARK3D 24/08/2022 11:23 File folder SystemSimulator 24/08/2022 11:23 File folder 05/08/2022 12:25 File folder Videos

Service pack delivery as patches via CST Update Manager

CST Update Manager 2023					
File Ho	me View				0
🔄 Import					
X Delete	Install Check for Description Updates +				
Exchange	Install				
Description			Date		
Original S	oftware Version		May 06	i, 2022	
➡ Hotfix			August	23, 2022	2
Hotfix			August	t 24, 2022	2

Integrating CST Studio Suite GUI and Opera Magnetostatic solver

 Motivation → provide users with a seamless workflow that allows a geometry built in CST Studio Suite to be solved using the Opera Magnetostatic solver

Benefits of the new workflow

- connect the highly accurate Opera Magnetostatic solver with the powerful user interface of CST Studio Suite
- use one single modelling tool for performing LF and HF analysis of coils (e.g. MRI analysis, accelerator magnets)
- make use of the complete post-processing features in Opera Post-Processor for low frequency applications

-

Integrating CST Studio Suite GUI and Opera Magnetostatic solver

• New Features:

new analysis parameters dialog for Opera Magnetostatic solver

Solver Type:	Start
Direct v	Close
21	Apply
Tolerance:	
1e-3	Help
Number of threads:	
1	
Surface element type:	
Curved 🗸	
Run options:	
Open solved model in Opera-3d Post-Processor only	

© Dassault Systèmes | Confidential Information | 30/06/2021 | ref.: 3DS_Document_2021

Integrating CST Studio Suite GUI and Opera Magnetostatic solver

- Capabilities:
 - build, setup and mesh the geometry in CST Studio Suite and directly run it through the Opera Magnetostatics solver
 - supports coils, permanent magnets, EMAG material properties, boundary conditions, symmetries and mesh information
 - post-process the solution using the Opera Post-Processing tools

26

CASE STUDIES

© Dassault Systèmes | Confidential Information | 11/11/2022 | ref.: 3DS_Document_2021

REDUCED ORDER MODELLING WORKFLOW (1/2)

- Reduced Order Modelling (ROM) is a technique to reduce the computational complexity of mathematical models in numerical solutions by producing an equivalent model with a lower fidelity that still retains the required accuracy
- Finite Element solutions from SIMULIA Opera are used to generate samples in a Design of Experiments (DoE)
- The DoE is then used to create a ROM by using an approximation method in SIMULIA Isight
- Both Opera & Isight are coupled for this workflow

With thanks to Bilquis Mohamodhosen for the slides

REDUCED ORDER MODELLING WORKFLOW (2/2)

- A Permanent Magnet Synchronous Motor has been used to validate this workflow
- Aim: Calculate the radial and tangential forces on the stator teeth over an electrical period so that these forces can be used for Noise, Vibration and Harshness (NVH) analyses
- Inputs:
 - Torque (*T*) and Speed (*N*) at which the machine is operating
- Outputs:
 - Radial (*Fr*) and Tangential (*Ft*) forces
- ROM will be an analytical model that produces *Fr* and *Ft* for any Torque and Speed within the operating range analyzed

ELECTROMAGNETIC & NVH SIMULATION COUPLING (1/3)

- Electromagnetic design of the electric motor for an EV/HV and design of the mechanical drive train have traditionally been conducted independently
- "Quiet" motors and gearboxes have often shown excessive system NVH when connected on the same drivetrain
 - We need a more integrated approach to the design
- Sensitivity studies for different types of motor deformations
- Reliable methodology for integration of software tools
- Electromagnetic software: SIMULIA Opera
- NVH software: any, as long as output file formats are correctly set up

With thanks to Bilquis Mohamodhosen for the slides

ELECTROMAGNETIC & NVH SIMULATION COUPLING (2/3)

- Various deformations in a motor include:
 - Stator ovalling
 - Static eccentricity
 - Stator tooth rocking
 - Rotor tilt
- These deformations have to be taken into account as they produce spurious harmonics which affect NVH in a motor

With thanks to Bilquis Mohamodhosen for the slides

ELECTROMAGNETIC & NVH SIMULATION COUPLING (3/3)

- Use of node/mesh displacement to account for deformations (instead of rebuilding the geometry)
 - More accurate, with effects due to mesh changes mitigated
 - Use of uniform mesh for more reliable force calculations
- Use of 'averaging algorithm' to efficiently eliminate discrepancies in forces
- NVH analysis:

OPERA MULTIPHYSICS SIMULATION OF MRI COILS (1/2)

Deformation of coils due to Lorentz forces and effect on field harmonics

- Superconducting solenoids in MRI magnets are used to produce a highly homogeneous (~ a few parts per million) DC field
 - Modern hospital MRIs operate at 3 T
- The very high fields and currents produce significant Lorentz (J x B) forces which can deflect the coils sufficiently to reduce the quality of the homogeneity
 - Homogeneity is usually expressed in terms of harmonic coefficients (Associated Legendre polynomials)
- This study determines whether the support structure is sufficient to minimize the deflections to an acceptable level
 - Electromagnetic -> Stress -> Electromagnetic

With thanks to Chris Riley for the slides

© Dassault Systèmes | Confidential Information | 30/06/2021 | ref.: 3DS_Document_2021

OPERA MULTIPHYSICS SIMULATION OF MRI COILS (2/2)

Deformation of coils due to Lorentz forces and effect on field harmonics

Legendre coefficient	Undeflected	Deflected		
A00	1,000,000	1,002,406		
A20	-309	-312		
A40	8.8	8.8		
A22	1.1 x 10 ⁻⁹	-4.0e x 10 ⁻⁶		
Effect on harmonic coefficients (in parts per million compared to A00				
undeflected)				
~0.25% increase in central field will affect resonant frequency for MRI				

Deflections of coils and support structure (exaggerated)

RAILWAY ELECTROMAGNETIC INTERFERENCE (1/2)

Stray fields from railway in a steel reinforced building

Minimizing EMI from infrastructure such as railways is important

- Human exposure
 - Limited to 0.5 mT for DC magnetic fields, for example
- Sensitive instruments
 - Hospitals, scienctific equipment,
- Opera has been used to assess the fields
 - Fields from traction circuits (DC/AC)
 - Fields from train positioning systems (AC)
 - Design mitigation systems to reduce EMI
- DC fields in steel structure from nearby traction circuits

With thanks to Chris Riley for the slides

35

© Dassault Systèmes | Confidential Information | 30/06/2021 | ref.: 3DS_Document_2021

RAILWAY ELECTROMAGNETIC INTERFERENCE (2/2)

Imaginary part of eddy current density in steel from 50 Hz AC supply

EDDY CURRENTS IN FIELD MEASUREMENT SENSOR (1/2)

Rotation of sensor array gives eddy currents => Lorentz forces & torque on sensors

- Cyclotron magnets are used in production of medical isotopes
 - Circular set of magnetic dipoles with accelerating particle beam gradually increasing energy / diameter of orbit
- 12 rotating cylinders representing sensors in gaps between magnet poles
- Used to accurately map mid plane field

• Upper half of cyclotron & sensors

Flux density on mid plane

Fields in pole and particle beam tracks

© Dassault Systèmes | Confidential Information | 30/06/2021 | ref :: 3DS_Document_202

EDDY CURRENTS IN FIELD MEASUREMENT SENSOR (2/2)

Eddy currents in sensor due to rotation and torque during rotation

-1.000

100

Roatation angle (deg)

150

With thanks to Chris Riley for the slides

38

SUMMARY

Introduction

Opera Solvers

Thank you for your attention Are there any questions?

Or you can contact me at ben.pine@3ds.com

Functional Material Properties

Common Installer for CST Studio Suite® and Opera®

New Workflow for Magnetostatic Analyses

Case Studies

39 25 SIMULIA

| ref.: 3DS_Document_2021

| ref.: 3DS_Document_2021