RF & Microwave solutions

SCRIPTING THE CST STUDIO SUITE USING PYTHON

► Kamal Mustafa

- CST Studio Suite Instructor
- > SIMULIA CST Technical Support

ABOUT HI-TECH

- ► 33 years representing RF & Microwave suppliers
- ► 20 years EDA Software
- ► Also: Components, T&M, Radar
- ► 18 years Electromagnetic Simulations
- Based in Zeist, Netherlands

ABOUT THE SPEAKER

Kamal Mustafa (Application Engineer)

- 2013-15 Master of Science @ Politecnico di Torino (Turin)
 - ▷ Telecommunications Engineering
- 2015-15 Research Assistant @ Chalmers University (Gothenburg)
- > 2016-19 RF Engineer @ Rosenberger Asia Pacific (Shanghai)
- ► Joined HI-Tech in 2019 (Zeist)

OUTLINE

- ▶ PYTHON Libraries Installation
- ► Open CST & Create A Project
- Parameters, Units, Frequency Setup
- Modeling and Simulation
- Other Possibilities
- ► Demo

5

VALUE OF SCRIPTING

▶ Helps to perform repetitive or predictable tasks without direct human inputs.

▶ Provides a faster time to value, when business processes must change.

Consistent, on-time output

► Fewer costly errors

► Growth & Scalability

CST PYTHON LIBRARIES

- ▶ The standard CST installation package comes with Python 3.6 (64-bit).
- To work with CST Python Libraries with an external python distribution, include the directory in Python's system path.
- This workflow uses Python distribution Anaconda with the provided Python Libraries.

Supported Python versions:

- Python 3.9.x (64-bit)
- Python 3.8.x (64-bit)
- Python 3.7.x (64-bit)
- Python 3.6.x (64-bit)

32-bit versions of Python are not supported.

CST PYTHON LIBRARIES

- ► The workflow is written in the Jupyter® Notebook.
- After a Python® environment is properly setup in the Jupyter® Notebook, CST Python Libraries can be imported with the following commands:

```
import sys
sys.path.append("C:\Program Files (x86)\CST Studio Suite2022\AMD64\python_cst_libraries")
import cst
import cst.results
import cst.interface
print(cst.__file__) # should print ' C:\Program Files (x86)\CST Studio Suite 2022\AMD64\python_cst_libraries\cst\__init__.py'
```

C:\Program Files (x86)\CST Studio Suite 2022\AMD64\python_cst_libraries\cst__init__.py

OPEN CST Studio Suite® & CREATE MICROWAVE STUDIO PROJECT

▶ Use the following command to open CST Studio Suite environment.

project = cst.interface.DesignEnvironment() #Open CST Design Environment

Create a new Microwave Studio Project and save it.

my_CST = project.new_mws() #Create a new Microwave Studio project

folder_path = "C:\\Users\\Kamal\\jupyter-notebooks\\"my_CST.save(folder_path + "My_dipole.cst") #Save the CST project

PARAMETERS HANDLING

- The code quoted as a string is a VBA code to store the parameter in Parameter List.
- The VBA code is assigned to the variable "ParameterDefineString" as a multiline string.

```
# 3. Add a parameter, define units, and define frequency range
# 3.1 Parameter handling
ParameterDefineString = """#
Sub Main
StoreParameter("D","0.05")
StoreParameter("gap","L/200")
StoreParameter("L","150")
End Sub"""
my_CST.schematic.execute_vba_code(ParameterDefineString)
```


PARAMETERS HANDLING

The VBA code is executed by using a command "execute_vba_code()" defined in CST Python Libraries.

```
# 3. Add a parameter, define units, and define frequency range
# 3.1 Parameter handling
ParameterDefineString = """#
Sub Main
StoreParameter("D","0.05")
StoreParameter("gap","L/200")
StoreParameter("L","150")
End Sub"""
my_CST.schematic.execute_vba_code(ParameterDefineString)
```


11

PARAMETERS HANDLING

After "my_CST.schematic.execute_vba_code(ParameterDefineString)" is executed, 3 new parameters with predefined values can be found in Parameter List in the CST Studio Suite®

			×
Expressi	on Value	Description	*
= 0.05	0.05		
= L/200	0.75		
= 150	150		-
	Expression = 0.05 = L/200 = 150	Expression Value = 0.05 0.05 = L/200 0.75 = 150 150	Expression Value Description = 0.05 0.05

Important actions (i.e., modeling, solver setup, excitation, etc.) are recorded as VBA-Commands and their names are listed in History List.

File	Home	Modeling	Simulation	Post-Processing	View							
Paste	X Delete Copy Copy Vi Clipboard	iew -	Simulation Project +	Setup Star Solver* Simula Simulatior	il Optimizer Par. Sweep tion @ Logfile •	Mesh G View Prop Mesh	ilobal Edit perties* Properties	History List	ulator Parametric Update	 ☑ Parameters ▼ ☑ Problem Type ▼ ☑ Information 	Open Report * Report	Macros Macros
vigatior	Tree		×	😽 My_dipole* 🔀								
History List 1 Define unit 2 Define frequency range 3 My_dipole 4 Define discrete face port 5 Add E-field monitor ▶6 set PBA version						Clos Run Ster Contir	× e to p					

► Double clicking an item in the history list opens the VBA code.

Edit History List Item	×
Define unit	
'Define Units With Units .Geometry "mm" .Frequency "ghz" .Time "ns" End With	^

- A multiline string of VBA commands is assigned to a variable, and it will be added to the History List by executing
 - "add_to_history ("Define unit", Full_History)"

Similarly, frequency range can be defined by adding a History List Item with the following commands.

BUILD MODEL

Python script can be used to build the model and to add the item "My_dipole" to the History List of the CST Studio Suite®

BUILD MODEL

BUILD MODEL

EXCITATION

Full_History = """ Pick.PickEdgeFromId "component1:feed section", "4", "4" Pick.PickEdgeFromId "component1:feed section", "2", "2" define port: 1 With DiscreteFacePort .Reset .PortNumber "1" .Type "SParameter" .Label "" .Folder "" .Impedance "50.0" .VoltagePortImpedance "0.0" .VoltageAmplitude "1.0" .CurrentAmplitude "1.0" .Monitor "True" .CenterEdge "True" .SetP1 "True", "0", "0", "-0.375" .SetP2 "True", "0", "0", "0.375" .LocalCoordinates "False" .InvertDirection "False" .UseProjection "False" .ReverseProjection "False" .FaceType "Linear" .Create End With

my_CST.modeler.add_to_history ("Define discrete face port", Full_History)

AND MORE..!!

- ► Field Monitors
- Mesh Properties
- Solver Selection & Simulation Run
- Access Results & Plot (0D/1D)
- Access Results & Plot (2D/3D)
- Post Processing
- Parametric Sweep
- Optimization

AND MORE..!!

- ► Field Monitors
- Mesh Properties
- ► Solver Selection & Simulation Run
- Access Results & Plot (0D/1D)
- Access Results & Plot (2D/3D)
- Post Processing
- Parametric Sweep
- ► Optimization

SOLVER & SIMULATION

- Solver Setup added in the history list.
- To check the selected solver, execute the command below and it will print the selected solver.

'HF Time Domain'

Start Simulation:

my_CST.modeler.run_solver()

ACCESS & PLOT RESULTS

- The package cst.result in CST Python Libraries provides access to 0D/1D results of CST files.
- It is not necessary to open the CST Studio Suite[®] while using functions defined in cst.result
- If CST Project is already open, we can work in interactive mode to access 0D/1D results.

#allow_interactive=True
My_dipole = cst.results.ProjectFile(r"C:\\Users\\Kamal\\jupyter-notebooks\\My_dipole.cst", allow_interactive=True)

You are working in interactive mode.

ACCESS & PLOT RESULTS

► The code below access S11 from CST & plots it.

```
s11 = My dipole.get 3d().get result item("1D Results\S-Parameters\S1,1")
ss = np.asarray([s11.get xdata() , s11.get ydata()])
fig1 = plt.figure(figsize=(10,10))
plt.subplot(2,1,1)
plt.plot(s11.get xdata(),20*np.log10(np.absolute(np.asarray(s11.get ydata()))))
plt.title(' S-Parameter Magnitude')
plt.ylabel(' S11 (dB)')
plt.xlabel(' Frequency (GHz)')
plt.grid(True)
plt.xlim((0,1.6))
plt.subplot(2, 1, 2)
plt.plot(s11.get xdata(),np.angle(np.asarray(s11.get ydata()),deg=True))
plt.title(' S-Parameter Phase')
plt.ylabel(' S11 Phase (degree)')
plt.xlabel(' Frequency (GHz)')
plt.grid(True)
plt.xlim((0,1.6))
```


ACCESS & PLOT RESULTS

A linear parametric sweep was performed on "L" from 130 to 170 with step width of 10
Parameter Sweep

				Start	
L = 130, 140,, 170 (5, Linear)	Parameter Sw)		
	Name:	L	\sim	ОК	
	Type:	Linear sweep	~	Cancel	
	From:	130		Help	
	To:	170			
	Define using:	Step width	~		
	Width:	10			

A linear parametric sweep was performed on "L" from 130 to 170 with step width of 10

```
#Run Parametric sweep on parameter L from 130 to 170 with step width of 10
par_sweep = """
Sub Main
With ParameterSweep
    .DeleteAllSequences
    .SetSimulationType ("Transient")
    .AddSequence ("Sweep1")
    .AddParameter_Stepwidth ("Sweep1", "L", 130, 170, 10)
    .Start
End With
End Sub """
my_CST.schematic.execute_vba_code(par_sweep)
```


▶ Result of different L values is plotted.

```
#Plot different values of Parameter L
run id = My dipole.get 3d().get all run ids()
fig2 = plt.figure(figsize=(10,7))
L = [];
for id in run id:
    s11 = My dipole.get 3d().get result item("1D Results\S-Parameters\S1,1",id)
    ss = np.asarray([s11.get xdata() , s11.get ydata()])
    par = s11.get parameter combination()
    S11 mag dB = 20*np.log10(np.absolute(np.asarray(s11.get ydata())))
    if id!=0:
        plt.plot(s11.get xdata(),S11 mag dB,label="L="+str(par['L']))
plt.legend(loc='lower right')
plt.
title('S-Parameter Magnitude')
plt.ylabel('S11 (dB)')
plt.xlabel('Frequency (GHz)')
plt.grid(True)
plt.xlim((0,1.6))
```


▶ Result of different L values is plotted.

FURTHER WORK

Access Results & Plot (2D/3D) – hdf5 file (.h5)

Optimization

```
RuntimeError Traceback (most recent call last)
Input In [120], in <cell line: 67>()
    1 #set up the optimization settings and start the optimizer
    3 StartOptimizer = """
    4 Sub Main
    5
  (...)
    65 End With
    66 End Sub"""
---> 67 my_CST.schematic.execute_vba_code(StartOptimizer)
```

RuntimeError: An error occurred while trying to execute execute_vba_code: Error in VBA code:

More command about parameter handling an be found in CST tudio Suite 2022 Help Automation and Scripting Visual Basic (VBA) 3D Simulation VBA VBA Objects

DEMO!

QUESTIONS?

