**RF** Lumination

#### UNDERSTAND LINEARITY IMPROVEMENT POSSIBILITIES ON A PHYSICAL AMPLIFIER

Dennis Roecker 1<sup>st</sup> Dec, 2022

#### **ROHDE&SCHWARZ**

Make ideas real



#### ROHDE&SCHWARZ





#### ROHDE & SCHWARZ Vertriebs GmbH

#### M.Sc. M.Sc. Dennis Roecker

Senior Application Engineer Signal- & Spectrum Analysis Muehldorfstraße 15 81671 München

email: dennis.roecker@rohde-schwarz.com

#### AGENDA

- ► Intro and motivation
  - Non-Linearities
  - Why modulated signals?
  - Why linearization?
- Amplifier measurements
  - AM/AM AM/PM
  - EVM/ ACLR
- Digital Pre-Distortion
  - Types of Pre-Distortion
  - Deriving models for linearization





#### NON-LINEARITIES: UNDERSTANDING DISTORTIONS

- Distortion limits RFFE performance
- Distortions might generally be defined as variations in complex gain (amplitude and phase) in three domains:
  - Amplitude (e.g. non-linear distortion)
  - Frequency (e.g. linear distortions)
  - Time (e.g. memory effects)
- All RFFE components demonstrate all the distortions, in varying proportions:
  - Mixers and Amplifiers often contribute most to non-linear and memory effect\_distortions
  - Filters often contribute the most linear distortion
- Distortion reduction is called Linearization



#### NON-LINEARITIES: AMPLIFIER DISTORTION

#### **AM/AM** Distortion





### WHY MODULATED SIGNALS?

- Traditional approach VNA with CW measurements
- CW signals do not accurately represent modern signals



- Alternative approach use the same signal that will be amplified
- Modern signals are wider BW's, higher crest factors
- Modulation errors due to distorsions



### **ADJACENT CHANNEL LEAKAGE RATIO (ACLR)**

- ► ACLR measurements determine the channel power and adjacent channel power
- Amplifiers can cause spectral regrowth to occur in adjacent channels resulting in more power



### **MODULATION QUALITY - ERROR VECTOR MAGNITUDE**



It might look different after going through the PA

Rohde & Schwarz

### **ERROR VECTOR MAGNITUDE**

- Error vector: difference between ideal constellation point and actual sample
- ► EVM to high → BER is increasing
  - Higher modulation scheme → lower EVM required
- ► EVM: FOM for inband signal performance
  - Compression, non-linearity
  - Noise (low SNR)
  - Frequency response
  - Inter-symbol interference



#### **ERROR VECTOR MAGNITUDE**





11 Rohde & Schwarz

### WHY LINEARIZATION?

- ► Two areas of interest:
  - compression
  - memory effect





Figure 4 Overview plot: measured AM/AM, ideal output, predistorted input signal, and target output signal (hard clipped)

#### WHY LINEARIZATION?

- Challenging RF signals on RF frontends
  - 5G in mmWave and RF, mMIMO, beamforming, increasing bandwidth, higher order modulations, digital payloads, wideband Electronic Warfare (EW)
- Significant power consumption is in the RF Front-End (RFFE)
  - Operating close to saturation offers best energy efficiency
  - Technologies such as GaN absolutely require digital predistortion for linear operation
- Various PA topologies studied
  - Doherty, Load Modulated Balanced Amplifier (LMBA), Outphasing, …
- ▶ PA gains in efficiency but is highly non-linear
   → Linearization is a \_MUST\_



### **DEMO AMPLIFIER MEASUREMENT (K18)**





LAN for control and data transfer



## Demo DEMO PA



- ► Frequency range: 50 MHz 4000 MHz
- ▶ Typ. Gain: 20dB @ 1GHz
- ► Typ. Inp. Power: 0dBm
- ► Max. Outp. Power: 22dBm

#### AMPLIFIER LINEARIZATION BY DIGITAL PRE DISTORSION (DPD)

### **EVM CONTRIBUTIONS**

Statistically independent sources of EVM (in an analog 2-port device)

- ► Frequency response, compensated by e.g. equalizer
- ► Noise (thermal and phase noise), compensated by I/Q averaging
- Non-linear effects, compensated by DPD

Due to their statistical independence, the total error power sums up, i.e.

$$EVM_{meas} \ge \sqrt{EVM_{FR}^2 + EVM_{Noise}^2 + EVM_{NL}^2}$$

Where  $EVM_{FR}$  is the EVM contribution from frequency response,  $EVM_{Noise}$  from noise, and  $EVM_{NL}$  from non-linearities respectively.

### **OPTIMIZATION THROUGH DPD**

► Pre-distort signal to compensate DUT characteristics

- ► Close to compression: Efficiency ↑ but non-linearity ↑
   → Linearization is a \_MUST\_
- PA designer: need understanding of system level performance with ideal predistortion on EVM and ACLR

Iterative Direct DPD provides this information



Figure 4 Overview plot: measured AM/AM, ideal output, predistorted input signal, and target output signal (hard clipped)



#### **REQUIRED DPD BANDWIDTH**

- ► Significant ACLR that we need to correct
- ► We'll need 4-5 x TX bandwidth for DPD



#### **TWO WAYS OF DPD**

Polynomial DPD = approximate linearisation by a polynomial

| Measurement Settings                                |      |                                  |          |       |    |          |                                   |      |            |  |
|-----------------------------------------------------|------|----------------------------------|----------|-------|----|----------|-----------------------------------|------|------------|--|
| Modeling                                            | DPD  | Detailed MSE                     | ACLR     | Power | Pa | ramete   | r Sweep                           | Powe | r Servoing |  |
| Polynomial<br>DPD                                   |      | On                               |          |       |    | Off      |                                   |      |            |  |
|                                                     |      | DPD Method U                     |          |       |    |          | Jse Generator DPD Option K541 🔹 👻 |      |            |  |
| Direct<br>DPD                                       |      | Update R&S SMW-K541 DPD          |          |       |    | Povel    | Update                            |      |            |  |
|                                                     | s    | Shaping                          |          |       |    | From Tab | ole                               |      | -          |  |
| Memory<br>Polynomial<br>DPD<br>Hammerstein<br>Model | C    | DPD Power/Linearity Tradeoff     |          |       |    |          | Gain 100.0 %                      |      |            |  |
|                                                     | _ C  | PD File Name On (                | Generato | r 1.  |    |          | DpdTabl                           | e    |            |  |
|                                                     | in S | Store Predistorted Waveform File |          |       |    |          |                                   |      |            |  |
|                                                     | C    | DPD Sequence                     |          |       |    |          | AM First                          |      | PM First   |  |
|                                                     | A    | AM/AM 2 MHz/ 16.0 MHz            |          |       |    |          | On                                |      | Off        |  |
|                                                     | A    | M/PM                             |          |       |    | •        | On                                |      | Off        |  |

## Direct DPD = Iterative approach to achieve best possible linearisation



### **GOAL: HOW GOOD CAN A PA BE?**

- ▶ DPD is used in real systems to optimize the PA performance
- ▶ DPD is a specialty of each system manufacturer and the "secret sauce" in between vendors
- ► PA manufacturer has no access to these sometimes significant size DPD teams
- Looking for an easy way to understand how good their devices can be

#### Direct DPD is offering this capability

- Iterative approach
- Compares ideal input signal to received distorted signal and calculates a new pre-distorted signal on a sample-by-sample base
- Takes care of non-linearity, memory effect, distortion
- Provides insight to what can be reached

### **CREATING A DPD MODEL**





#### R&S®FSW-K18D Direct DPD

- Iterative approach
- Compensates for memory effects
- Excellent performance especially for amplifiers with memory effects
- Reference for best possible
  - Suppliers typically do not have access to DPD algorithms used by system integrators

#### R&S®FSW-K18M memory polynomial

- Memory polynomial model or Hammerstein model based on Direct DPD result
- Modeling can be adopted in order and memory depth
- Model verification on DUT
- Proves easy linearization of RFFE solution

### **DEMO DIGITAL PRE-DISTORTION (K18)**



## Demo DEMO PA



- ► NR 100 MHz UL signal (1ms)
- ► 2.3 GHz
- ► Generator power: -3 dBm
- ► Marker: restart

#### **MEMORY POLYNOMIAL MODEL**

- Derive an algorithm based memory DPD, as described in Application Note <u>1EF105</u>
- ► We use a memory polynomial DPD

$$\tilde{P}(nT) = \sum_{p=1}^{P} \sum_{m=1}^{M} k_{p,m} A(nT - \tau_m) |A(nT - \tau_m)|^{p-1}$$

We use the result of K18D to directly derive the coefficients, rather than modeling the DUT and inverting the model

#### HAMMERSTEIN MODEL

Predistortion according to the Hammerstein model, is applied to the IQ sample stream by first applying a non-linear polynomial, followed by a convolution



- Easier to be applied in real-time to any IQ stream
- Much less complex  $\rightarrow$  less power needed to apply
- ► But a bit less efficient in EVM & ACLR improvement

#### **COMPARISON OF MODELS**

| Predistortion Approach                                            | Measurement<br>Time                | EVM<br>Improvement<br>(In-band)    | ACLR<br>Improvement<br>(Out-of-band) |
|-------------------------------------------------------------------|------------------------------------|------------------------------------|--------------------------------------|
| Polynomial Model                                                  | $\checkmark \checkmark \checkmark$ | $\checkmark$                       | ✓                                    |
| Direct DPD<br>(with Meas Bandwidth = Signal<br>Bandwidth)         | <b>~ ~ ~</b>                       | $\checkmark\checkmark$             | ✓                                    |
| Direct DPD<br>(with increased Meas Bandwidth)                     | $\checkmark\checkmark$             | $\checkmark\checkmark$             | $\checkmark\checkmark$               |
| Direct DPD<br>(with increased Meas Bandwidth<br>and IQ Averaging) | ✓                                  | $\checkmark \checkmark \checkmark$ | $\checkmark \checkmark \checkmark$   |
| Memory Polynomial Model                                           | $\checkmark\checkmark$             | $\checkmark\checkmark$             | $\checkmark\checkmark$               |
| Hammerstein Model                                                 | $\checkmark\checkmark$             | $\checkmark\checkmark$             | ✓                                    |

# DESIGN: USING EDA TO PIN OUT EXPECTED PERFORMANCE WITH DPD

Simulate as close to reality for risk mitigation



#### CONCLUSION

- There is an easy way to understand what is possible
- Works with any non-linear device and any signal
- Various models can be derived
- Works with physical hardware and even in EDA while design



#### Find out more RF POWER AMPLIFIER TESTING | ROHDE & SCHWARZ (ROHDE-SCHWARZ.COM)



This webinar is intended for engineers who work on RF power amplifier design and test. It will cover the purposes of research & development, characterization, and production



Investigate RF power amplifier linearization benefits in EDA including a comparison to hardware test

This webinar is intended for engineers who design RF frontends and RF power amplifiers and striving for the best possible error vector magnitude (EVM) performance.



#### **ROHDE&SCHWARZ**

Make ideas real



### QUESTIONS