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AGENDA

» Intro and motivation
— Non-Linearities
— Why modulated signals?
— Why linearization?

» Amplifier measurements
- AM/AM AM/PM
- EVM/ ACLR

» Digital Pre-Distortion
— Types of Pre-Distortion

— Deriving models for
linearization
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NON-LINEARITIES:
UNDERSTANDING DISTORTIONS ===

Distortion limits RFFE performance L@-»:

» Distortions might generally be defined as variations in
complex gain (amplitude and phase) in three domains:

— Amplitude (e.g. non-linear distortion)

-« l

- Frequency (e.g. linear distortions) L
. —_— _— J
- Time (e.g. memory effects) \
» All RFFE components demonstrate all the distortions,
in varying proportions: @
— Mixers and Amplifiers often contribute most to 85
non-linear and memory effect_distortions

- Filters often contribute the most linear distortion >
Amplitude
Time
Frequency

» Distortion reduction is called Linearization

5 Rohde & Schwarz Understand linearity improvement possibilities on a physical amplifier



NON-LINEARITIES:
AMPLIFIER DISTORTION

AM/AM Distortion AM/PM Distortion

6 AM/PM
4 AM/AM [P 1 Clrw e 2 Mod e Idealline

-30.0 dBm 12.0 dBm
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WHY MODULATED SIGNALS?

» Traditional approach — VNA with CW » Alternative approach — use the same signal that
measurements will be amplified

» CW signals do not accurately represent » Modern signals are wider BW's, higher crest
modern signals factors

» Modulation errors due to distorsions

APower APower

— M4—>

AFrequency AFrequency

wuwv\Jvaww
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ADJACENT CHANNEL LEAKAGE RATIO (ACLR)

» ACLR measurements determine the channel power and adjacent channel power
» Amplifiers can cause spectral regrowth to occur in adjacent channels resulting in more power

Without Amplifier | With Amplifier
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MODULATION QUALITY - ERROR VECTOR MAGNITUDE

» Ideal constellation diagram

» It might look different after going through the PA
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ERROR VECTOR MAGNITUDE

» Error vector: difference between ideal Magnitude
constellation point and actual sample error

» EVM to high - BER is increasing

— Higher modulation scheme - lower EVM
required

» EVM: FOM for inband signal performance
Phase

— Compression, non-linearity error

— Noise (low SNR)
— Frequency response
— Inter-symbol interference

Error
vector

Reference
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ERROR VECTOR MAGNITUDE

EVM

@ 11 Rohde & Schwarz

Idec

il EVM
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WHY LINEARIZATION?

AM/AM
» Two areas of interest: ! SO ' ' [
U .
. ideal
— compression 1t DPD limited
memory effect g 2y LSRR
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input amplitude / dB

Figure 4 Overview plot: measured AM/AM, ideal output, pre-
distorted input signal, and target output signal (hard clipped)

-56.0 dBm 14.0 dBm
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WHY LINEARIZATION?

» Challenging RF signals on RF frontends

- 5G in mmWave and RF, mMIMO, beamforming, increasing bandwidth, higher order
modulations, digital payloads, wideband Electronic Warfare (EW)

» Significant power consumption is in the RF Front-End (RFFE)

- Operating close to saturation offers best energy efficiency

- Technologies such as GaN absolutely require digital predistortion for linear operation
» Various PA topologies studied

— Doherty, Load Modulated Balanced Amplifier (LMBA),
Outphasing, ...

» PA gains in efficiency but is highly non-linear
- Linearizationisa MUST _
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DEMO AMPLIFIER MEASUREMENT (K18)




SETUP

LAN for control and data transfer

Rohde & Schwarz



Demo

DEMO PA

» Frequency range: 50 MHz — 4000 MHz
» Typ. Gain: 20dB @ 1GHz

» Typ. Inp. Power: 0dBm

» Max. Outp. Power: 22dBm
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AMPLIFIER LINEARIZATION BY DIGITAL PRE DISTORSION
(DPD)




EVM CONTRIBUTIONS

Statistically independent sources of EVM (in an analog 2-port device)
» Frequency response, compensated by e.g. equalizer

» Noise (thermal and phase noise), compensated by I/Q averaging
» Non-linear effects, compensated by DPD

Due to their statistical independence, the total error power sums up, i.e.

EVMmeas = \/EVMI?“R + EVMI%Ioise + EVMI%IL

Where EVMg, is the EVM contribution from frequency response, EVM,,... from noise, and EVM,
from non-linearities respectively.
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AM/AM

1 T
OPTIMIZATION THROUGH DPD S
ideal
-1+ DPD limited
% DY hard clipped output
; T S P Y
» Pre-distort signal to compensate DUT characteristics S 4l
» Close to compression: Efficiency 1 but non-linearity 1 % ST
> Linearizationisa _MUST _ g : yd |
» PA designer: need understanding of system level 81 P -
performance with ideal predistortion on EVM and ACLR o 1
— Iterative Direct DPD provides this information "o - o 4 2 0

input amplitude / dB

Figure 4 Overview plot: measured AM/AM, ideal output, pre-
distorted input signal, and target output signal (hard clipped)

Predistorted
input signal

Input
signal

Linearized
output signal

Feedback loop
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REQUIRED DPD BANDWIDTH

» Significant ACLR that we need to correct

» We'll need 4-5 x TX bandwidth for DPD
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Ref Level 10.00 dBrm ® RBW 100 kHz

Att dB s) ® VBW | MHz Mode Auto FFT

5191 pts
5G NR
Power

12.19 dBm
12.19 dBm

Offset Lower Abs
100 -25.93 dBm
200 -43.40 dBm
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Minimum, bandwidth to improve ACLR

51,9 MHz/
ACLR : PASS

Upper Abs Lower Rel
-26.89 dBm
-44.81 dBm -55.59 dBc

e 1Rm Clrw

Upper Rel

-57.00 dBc



TWO WAYS OF DPD

Polynomial DPD = approximate linearisation
by a polynomial

Measurement Settings .

Modeling

Polynomial
DPD

Memory
Polynomial
DPD

Hammerstein
Model

26 Rohde & Schwarz

DPD Detailed MSE

ACLR | Power

On

DPD Method

Update R&S 5SMW-K541 DPD -

Shaping

DPD Power/Linearity Tradeoff

DPD File Name On Generator

Store Predistorted Waveform File

DPD Sequence

AM/AM

AM/PM

Parameter Sweep = Power Servoing

Use Generator DPD Option K541

Update

From Table

100.0 %

DpdTable

AM First PM First
On Off

On Off

Direct DPD = Iterative approach to achieve
best possible linearisation

Modeling

Polynomial
DPD

Memory
Polynomial
DPD

Hammerstein
Model

DPD Detailed MSE

ACLR

On

Direct DPD

Iterations
DPD Power/Linearity Tradeoff
Gain Expansion

DPD File Name On Generator

Store Predistorted Waveform File

Apply Direct Dpd

Apply wrap-around smoothing
on DPD waveform
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Power

Parameter Sweep P

Start Direct DPD Sequence

10

50.0 %

0.0dB

AmpToolsDirDpd

Save as...



GOAL: HOW GOOD CAN A PABE?

vy

vy

DPD is used in real systems to optimize the PA performance
DPD is a specialty of each system manufacturer and the “secret sauce” in between vendors

PA manufacturer has no access to these sometimes significant size DPD teams
Looking for an easy way to understand how good their devices can be

Direct DPD is offering this capability
— lterative approach

— Compares ideal input signal to received distorted signal and calculates a new pre-distorted
signal on a sample-by-sample base

— Takes care of non-linearity, memory effect, distortion
— Provides insight to what can be reached
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CREATING A DPD MODEL

LAN for control and data transfer

R&S®FSW-K18D Direct DPD

/

o

» |terative approach

= Compensates for memory effects

= Excellent performance especially for
amplifiers with memory effects

= Reference for best possible
= Suppliers typically do not have
access to DPD algorithms used by
system integrators

R&S®FSW-K18M memory polynomial

/- Memory polynomial model or \
Hammerstein model based on Direct
DPD result

= Modeling can be adopted in order and
memory depth

= Model verification on DUT

J

28

Proves easy linearization of RFFE

\ solution /
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DEMO DIGITAL PRE-DISTORTION (K18)




Demo

DEMO PA

» NR 100 MHz UL signal (1ms)
» 2.3 GHz

» Generator power: -3 dBm

» Marker: restart
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MEMORY POLYNOMIAL MODEL

» Derive an algorithm based memory DPD, as described in Application Note 1EF105

» We use a memory polynomial DPD
M

P
P(nT) = Z z kpmAMT — 1) |[A(nT — T,)|P1

p=1m=1

» We use the result of K18D to directly derive the coefficients, rather than modeling the DUT and
inverting the model
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https://www.rohde-schwarz.com/us/applikationen/k18d-matlab-modeling-toolkit-application-note_56280-621477.html

HAMMERSTEIN MODEL

» Predistortion according to the Hammerstein model, is applied to the 1Q sample stream by first
applying a non-linear polynomial, followed by a convolution

Non-Linearity Filter
- {polynomial) L (with Memory Order tabs) 1 _
using R&S SMx K541 using R&S SMx K544

» Easier to be applied in real-time to any 1Q stream
» Much less complex - less power needed to apply
» But a bit less efficientin EVM & ACLR improvement
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COMPARISON OF MODELS

Predistortion Approach Measurement EVM ACLR

Time Improvement |Improvement

(In-band) (Out-of-band)

Polynomial Model v v v
Direct DPD
(with Meas Bandwidth = Signal vv'v vV v
Bandwidth)
Direct DPD
(with increased Meas Bandwidth) v Vv v
Direct DPD
(with increased Meas Bandwidth v vv'v vV
and 1Q Averaging)
Memory Polynomial Model vV vV s
Hammerstein Model vV s v
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DESIGN: USING EDA TO PIN OUT EXPECTED PERFORMANCE
WITH DPD

» Simulate as close to reality for risk mitigation

- R&S WinlQSIM2 R&S VSE

Signal Generation Signal Analysis

|
L -

Cadence Visual System
Simulator (VSS)

RF Design/Analysis Direct DPD
Linearization
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CONCLUSION

There is an easy way to
understand what is
possible

Works with any non-linear
device and any signal

Various models can be
derived

Works with physical
hardware and even in EDA
while design
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tion benefits in EDA -
including a comparison to hardware
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https://www.rohde-schwarz.com/solutions/test-and-measurement/rf-microwave-components/amplifiers/amplifiers_231854.html

QUESTIONS




