Presenter: Dirk Faber: <u>dirk.faber@hitechbv.nl</u>

TEMPHILIN

Behavioral models of power RF GaN Transistors

HHTECH

RF & Microwave solutions

Maury Microwave

Your Calibration, Measurement & Modeling Solutions Partner!

AMCAD Engineering

Advanced Modeling for Computer-Aided Design

https://hitechbv.nl/ https://www.maurymw.com/ https://www.amcad-engineering.com/

Agenda

2

Moury Microwaw LLC18-7 Bidirectional Coupler

- EPHD description
 - Types of larges Signal transistors model
 - Motivation
 - Theory
- EPHD model packaged transistors example
- Benchmarking X-parameter vs EPHD
- Measurement bench & Methodology

EPHD description

EPHD model packaged transistors

Benchmarking

Measurement Bench & Methodology

Types of Large-Signal Transistor Model's * Microwave

soluti

A LIER

Motivation

Hybrid Doherty Amplifier Design using a packaged device

Load Pull measurement only ?

No: Load Modulation

Transistor model requirement:

- Accuracy over a wide dynamic range
- Accuracy over different
 load conditions

• For different class of operating conditions

Compact Model

Black Box Model

UR

Packaged transistor

Enhanced Polyharmonic Distorsion mode Aicrowave solutions

Harmonic superposition 3rd order expansion !

- The model is extended to the third order
- Bi(t) is the \sum of f0 and harmonic modulated tones
- The main nonlinearities are driven by the incident power wave @f0 at the input port

 $\widetilde{b_{ik}(t)} = S_{ik,11,1}(|\widetilde{a_{11}(t)}|)\widetilde{a_{11}(t)} + S_{ik,21,1}(|\widetilde{a_{11}(t)}|)\widetilde{a_{21}(t)} + T_{ik,21,1}(|\widetilde{a_{11}(t)}|)p^{k+1}\widetilde{a_{21}(t)}^* \quad \text{Order 1} \\ + S_{ik,21,2}(|\widetilde{a_{11}(t)}|)p^{-1}\widetilde{a_{21}(t)}^2 + T_{ik,21,2}(|\widetilde{a_{11}(t)}|)P \,\widetilde{a_{21}(t)}\widetilde{a_{21}^*(t)} + U_{ik,21,2}(|\widetilde{a_{11}(t)}|)p^3\widetilde{a^{21^*}(t)}^2 \quad \text{Order 2} \\ + S_{ik,21,3}(|\widetilde{a_{11}(t)}|)p^{-2}\widetilde{a_{21}(t)}^3 + T_{ik,21,3}(|\widetilde{a_{11}(t)}|)\widetilde{a_{21}(t)}^2 \,\widetilde{a_{21}^*(t)} + U_{ik,21,3}(|\widetilde{a_{11}(t)}|)p^2\widetilde{a_{21}^*(t)}^2 + W_{ik,21,3}(|\widetilde{a_{11}(t)}|)p^4\widetilde{a_{21}(t)}^3 \, \text{Order 3} \\ \end{array}$

Measurement Process for model extraction crowave solutions

For each fundamental frequency, a pattern of load impedances is proposed, as follow :

$$\begin{array}{lll} & [49 \ Zload_{f0}] & \& & [Zload_{2f0} = Z_{ref}] & \& & [Zload_{3f0} = Z_{ref}] \\ & & [Zload_{f0} = Z_{ref}] & \& & [7 \ Zload_{2f0}] & \& & [Zload_{3f0} = Z_{ref}] \\ & & [Zload_{f0} = Z_{ref}] & \& & [Zload_{2f0} = Z_{ref}] & \& & [7 \ Zload_{3f0}] \\ \end{array}$$

EPHD description

Benchmarking

EPHD model packaged transistors

Measurement Bench & Methodology

Impedance configuration

- Reference : Compact Model CREE CGH40
- Model extraction with similar points density(≈ 49 impedances @ f0)
- Same load impedances @2f0 & 3f0

Class AB model : X-parameters Interpolation

Pin (dBm)

20

25

30

Pin (dBm)

30

Class AB model : EPHD Interpolation

Class AB model : X-parameters Extrapolation

0.95 mag (Gamma In) Pout (dBm) PAE (%) 0.94 0.93 0.92 0.91 -10 -5 -10 -5 -10 -5 Pin (dBm) Pin (dBm) Pin (dBm)

Pout (dBm) @ 2f0 Power Gain (dB) 60-AMPM (deg) -20 -40 -60 30--10 -5 -10 -5 -10 -5 Ω Pin (dBm) Pin (dBm)

Pin (dBm)

1 1 1

Class AB model : EPHD Extrapolation

Benchmarking Conclusion

- EPHD ensure more accurate interpolations in areas where the gain & current curvatures have sharp variations
- EPHD predictions are more accurate in load extrapolation conditions due to the higher order of nonlinearity description.
- For low input impedance areas, or negative input impedances, X-parameters formalism does not allow to run a proper model extraction
- Both models allow good simulation convergence
- Extraction time for X-parameters is higher than the extraction time for EPHD (measurements)
- Accurate to simulate harmonic behavior

EPHD description

Benchmarking

EPHD model packaged transistors

Measurement Bench & Methodology

Class AB model @ 3,7GHz

RF & Microwave solutions

The model is able to reproduce the measurements which have been used for the model extraction

Class AB

Class AB model @ 3,7GHz

→ EPHD

→ Measurement

The model is able to reproduce the measurements which have **NOT** been used for the model extraction

Class AB

Class C model @ 3,7GHz

Class C model @ 3,7GHz

EPHD: Frequency Interpolation Capabilities

• EPHD extraction for 3,7 & 3,95 GHz

DED

EPHD extraction area including Z_{Opt_PAE} and Z_{Opt_Pout} Dynamic variation of the load impedance

EPHD: Circuit Realization

• Doherty PA realization in band [3,7 - 3,95 GHz]

Benchmarking Conclusion

- Strong model robustness for simulations in both AB and C Class (with strong NL behavior regarding the gain curve shape)
- Strong model robustness for dynamic load modulation (extrapolated impedance have been verified)
- Accurate to simulate harmonic behavior
- Ability of the EPHD to predict the overall Design performances without any convergence issues even for extrapolated loading conditions.
- Proof of concept has been made on a real test case
- EPHD model extraction is a software module part of the IVCAD catalogue (already sold as a turnkey solution)
- The EPHD is a promising candidate for the design and realization of power amplifiers of future telecommunication systems due to its robustness and reliability.

EPHD description

EPHD model packaged transistors

Benchmarking

Measurement Bench & Methodology

Measurement bench

• Hardware :

- Vector Network Analyzer
- Power Meter
- Instrumentation driver
- Circulator
- Couplers
- Fundamental & Harmonic tuner (passive, hybrid or active)
- Comb generator (+ External RF Source)
- Power Supply (DUT Bias)
- Software :
 - IVCAD
 - Vector Receiver Load Pull (MT930C)
 - Time domain waveform LSA (MT930GA)
 - EPHD model extraction (MT930R1)
 - Basic Visualisation (MT930B1)
 - Advanced Visualization (MT930B2)
 - Measurement Toolbox (MT930P)
 - > Active Load Pull (MT930H) optional

Extraction methodology (1)

First step : location of optimum Gain on linear condition

S parameter data or measurement – IVCAD ideal matching [S22*]

Extraction Methodology (2)

Second step : Search of PAE/ Pout optimum @ f0

PS/IS with pattern f0 definition with High resolution (~60 curves)

Extraction Methodology (3)

3

Third step : harmonic influence (nf0, n>1) [mf0 with m<n on Opt PAE]

Example : pattern 2f0 definition with High gamma settings (~20 curves)

Extraction Methodology (4)

Fourth step : pattern definition for EPHD extraction]

Setup & Measurement plug-in – LP Measurement – Power Sweep

EPHD Using IVCAD : Sweep plan Measurement e solutions

Setup & measurement		16	
New 🔓 Open 💥 Close 🔚 Save 🚼 Save	e as 🕑 Initialize bench 🍈 Shutdown bench	🕟 Start 🕕 Pause 🔳 S	te
atun Massurement Sween Plan	•		
eup measurement onception			
Sweep plan		Settings of selected action	
Drag and drop actions into tree to build your su	weep plan, double-click on an check box to select/unselect it.	Orientation: Load V	
Change measurement configuration		Location: Target 🗸	
Change output file	Output DUT biasing, quiescent: 0.0, pulse: 3.4 (DUT ref. plane)	Harmonic: f0 🗸	DI IT bias
Change stop conditions	🛛 😨 🍈 Input DUT biasing, quiescent: 0.0, pulse: 0.5 (DUT ref. plane)	Show calibration area at: 🔍 GHz	DUT DIAS
Perform measurement	🖶 🔽 🤣 1 loop	Override measurement configuration if possible (only for target location, and same orientation/harmonic)	
		Impedances	Impodence even \emptyset f((40)
🔯 Loop/Group (nestable)	Move load tuner	Impedances: 49: Preview: 0	
🧧 Wait	Perform measurement	Z0 = 50 ohms 70. 50 0	
💭 Message	Change measurement configuration		
			$\int \partial t \partial $
OUT power state	🔄 🗹 👳 Load impedance sweep (target, 2.f0, 7 impedances)		\rightarrow Impedance sweep @ 2t0 (7)
DUT biasing	Perform measurement		
DUT biasing optimization			
Hange wafer	□ 🐨 Load impedance sweep (target, 3.f0, 7 impedances)		
Change prober temperature			Impedance sweep @ 3f0 (7)
Move prober	🖶 🔽 🐲 1 loop		
Mave timer			
Whove when	Wove load tuner		
🔯 DUT biasing sweep (nestable)	Codd impedance sweep (angel, io, io impedances)		
☆ Temperature sweep (nestable)	Change measurement configuration		
🖗 Wafer plan (nestable)			
	🖨 🗹 🚳 Load impedance sweep (target, 2.f0, 7 impedances)		Other loops for other frequencies
	Perform measurement Connect measurement		
Impedance sweep (nestable)			
Frequency sweep (nestable)	🖃 🔽 🧔 Load impedance sweep (target, 3.f0, 7 impedances)	Gamma Arc Circle Rectangle VSWR	
🔯 Power sweep (nestable)	🔤 🕨 Perform measurement	Gamma: [0.63 , 161.56 °] Settings of	
Script (nestable)		Impedance: 11.6329 + i. 7.6875 Ω	
SCPI Command			
SCPI Test (nestable)		Angular res.: 30.0	
SCPT rest (restable)	Sweep		
	nlan	Central point	
	Plait		
	script		
		Add \ominus Clear	
		Apply Restore	

Port 4 Port 2 11:25 Port 3 AMCAD Engineering Advanced Modeling for Computer-Aided Design