Presenter: Dirk Faber: <u>dirk.faber@hitechbv.nl</u> Amplifier Characterization by doing harmonic load pull and large signal measurements

RF & Microwave solutions

TITTILLANA

European master distributor of:

AMCAD Engineering

Advanced Modeling for Computer-Aided Design

Agenda

Considerations

- •Setup and calibration of Vector receiver load pull configuration
- Harmonic vector receiver loadpull
- •Large signal and time domain

Passive & hybrid active vector-receiver & Microwave solutions load pull $P_{in,del} = \frac{1}{2} (|a_1|^2 - |b_1|^2) = \frac{1}{2} |a_1|^2 (1 - |\Gamma_{in}|^2)$

- Measures vector incident and reflected (a_x and b_x) waves
- Enables calculation of $P_{\text{in. del.}}$, Power Gain (G_{p}) and Power Added Efficiency (PAE)
- Measurements performed at calibrated DUT reference plane

Hybrid active VRLP Configuration (high power, high gamma applications)

Maury Interconnect ColorConnect™

ColorConnect[™] makes it a simple matter to avoid and eliminate damaged equipment, degraded equipment reliability, degraded performance and lengthy maintenance times due to improper mating (and attempted mating) of incompatible adapters. ColorConnect[™] Precision Adapters are available in N Type, 3.5mm, 2.92mm, 2.4mm and 1.85mm in-series and between-series.

COLOR GUIDE	FMAX	CONNECTOR	TORQUE
BROWN	18 GHz	SMA	5 in -I b
VIOLET	18 GHz	7mm	12 in-Ib
RED	18 GHz	Precision Type N	12 in-Ib
ORANGE	26.5 GHz	3.5mm	8 in-Ib
YELLOW	40 GHz	2.92mm (K)	8 in-Ib
GREEN	50 GHz	2.4mm	8 in-Ib
BLUE	67 GHz	1.85mm (V)	8 in-Ib

IEEE P287 color code

https://www.maurymw.com/pdf/1G-009%20ColorConnect.pdf

Maury Interconnect Stab

StabilityPlus cable assemblies

Achieve the best measurement uncertainty with the industry's best phase-stable cable assemblies!

- Mechanical characteristics which lead to improved uncertainty
- Best phase stability with flexure
- Best insertion loss stability with flexure
- Superior flexibility
- Durable, ruggedized and crush resistant
- Longer flex-life
- Color-coded connectors
- Availability
- Up to 67 GHz
- 1.85mm, 2.4mm, 2.92mm, 3.5mm and Type N connectors
- Low-profile option for high-density applications
- Right-angle connectors
- Phase-matched sets
- 400+ standard assemblies in stock for next-day shipping

Stability µlus[™]

https://www.maurymw.com/Interconnect_Solutions/Stability_Plus.php

Maury Interconnect

StabilityPlus "Low Profile" cable assemblies

Feature the same excellent electrical performance as Maury's ruggedized StabilityPlus[™] cables, but with a more compact and flexible design.

<u>30%</u> lower in cost compared with StabilityPlus cable assemblies

https://www.maurymw.com/Interconnect_Solutions/Stability_Plus_LP.php

Fixturing

As important as the rest of a load pull! It can make and break measurement results.

Consideration to take:

- Water cooling avoids thermal effects
- Integrated biasing on fixture avoids instabilities
- 50Ω to 10Ω impedance transformation increases power transfer
- High quality connectors for low insertion loss
- Include TRL Calibration Kit
- Etc.

Almost every loadpull configuration requires a custom fixture

VRLP setup considerations

Choice of the measurement mode (CW or Pulsed)

- CW means power is always on during measurement
- CW is easy to setup since no timing / triggering is required
 - Relatively simple instruments can be used
- CW is mainly used for amplifier characterization /validation on circuit level
- Pulsed means sort RF-Pulses; ~100µs with a duty cycle of 10%
- Pulsed is more difficult to setup due to:
 - Timing and triggering
 - Bandwidth filter (NBF or WBF)
 - Choice of equipment
 - VNA with internal pulse modulators or not
 - Source with pulse RF-option or use CW source with external modulator
 - · Power meter with pulsed measurement capability
 - DC Power supply or SMU with pulse capability

				ZVx configur	ation		2	×
				Force Iden	tification As Schwarz ZNA			~
				Allow Auto	Range Attenua	tion		
				Use a ZVAX	(-24 Extension	Unit		
				Use a ZVA	(-TRM Extensio	n Unit		
Supplies				Use a Cust	om External Pul	lse Modulator		
Supplies				Custom	Harmonics Filte	rs (ZVAX-24)		
	Setup > VNA			Port 1:	AUTO [ON]			
	- Enabled			Port 2:	AUTO [OFF]			
Vector	Mode: Pulsed		~	Port 3:	AUTO [ON]			
Network	Hardware Setup			7VAX - 4	M Modulation ((Evt1: Shane :)	Ext2: Sync)	
Analyser	Driver					(EXCL: Shape ;	Ext2. Syncj	
	Driver:	Robde & So	hwarz Ge	ZNA - AM N	lodulation (Puls	e Mod inputs)		
	Address:	GPTB0::20:	INSTR	Force ALC	ON in CW mode	:		
T [S]	Options:			Receiver A	attenuator	0	\sim	dB
	VISA library:	Default	_	Receiver B	attenuator	0	\sim	dB
Reference	Command timeout:	30000	ms	Receiver C	attenuator	0	\sim	dB
10	Command delay:	0	ms	Receiver D	attenuator	0	\sim	dE
			·		al Triagor input			
					ai myyei input			
ber				Trigger dela	av: 0	5		
ber	Ports to use:			Trigger dela	ay: 0	s		

нтесн

Wideband vs Narrowband detection

Wideband detection (WBF) is a synchronous detection; A pulse acquisition trigger is required.

Advantages:

- Fast Measurement Speed
- No loss of dynamic range in function of the duty cycle
- Acquisition window within the pulse is defined. No transient effects take into account (overshoot, rise time, fall time, ringing, ...)

Disadvantages:

- Higher Noise Floor due to the wider IFBW (Dynamic Range = f(IFBW, Averaging) = f(Ton))
- Pulse Width limitations. As pulse width gets smaller, the spectral energy spreads out.
 - IF bandwidth (=1/Ton) has to be high compared to the Pulse Width (e.g. : Ton=100 usec => IFBW=1/(Ton) > 10KHz)

Wideband vs Narrowband detection

Narrowband detection (NBF) is an asynchronous detection.; A pulse acquisition trigger is not required.

Advantages:

- No lower pulse-width limitations
- Measurement dynamic range is sufficiently high for 1% to 100% of duty cycles

Disadvantages:

- Measurement dynamic range decreases as duty cycle decreases. Average power of the pulses gets smaller, resulting in less SNR (Dynamic range degradation = 20*log(duty cycle)')
- Higher PRF is, slower measurement speed will be but has to be high compared to the IF bandwidth (e.g. : T=1msec => IFBW=1/(20*T)= 50Hz; T=10msec =>IFBW=5Hz)
- No acquisition windows within the pulse is defined. Possibility to measure wrong results in function of the transient effects (overshoot, rise time, fall time, ringing, ...) => Average Pulse measurement

12 Terms error model with classic VNA Calibration

10 terms error + 2 terms error for isolation (optional)

 8 terms error model applicable only in forward

8 Terms error model

 $\frac{1^{st} step :}{UOSM}$ Calibration between P_{1DUT} & P_{2DUT}

- Vectorial correction allow to correct only wave ratio
- A1/B1, A2/B2... real/imaginary corrected
 - Mag(A1), Mag(B2)...?

$$\begin{pmatrix} A_1 \\ B_1 \end{pmatrix} = \begin{pmatrix} -\Delta ein & e_{11} \\ -e_{00} & 1 \end{pmatrix} \cdot \begin{pmatrix} A_0 \\ B_0 \end{pmatrix}$$
$$\begin{pmatrix} A_2 \\ B_2 \end{pmatrix} = \begin{pmatrix} -\Delta eout & e_{22} \\ -e_{33} & 1 \end{pmatrix} \cdot \begin{pmatrix} A_3 \\ B_3 \end{pmatrix}$$

Coefficient |e10|

solu

DEL

Context – Phase Coherence

• With standard VNA, Magnitude measurements of travelling waves don't present difference between two consecutive sweeps

Sweep 2

Context – Phase Coherence

- Phase response changes from one sweep to another.
- Change of the phase of the LO signal from one sweep to another.
- Measurements of the phase will not be the same at a given frequency between two sweeps at the same frequency

Sweep 2

Sweep 1

THE P

Large signal analysis with ZNA

- VNA's are mixer-based systems. The LO-phase will change during frequency sweep.
- This means that we cannot directly measure the phase across frequency using unrationed (a1, b1) measurements.

Context – Phase Coherence

Incident and reflected a and b waves are ratioed against the harmonic phase reference with constant phase relationship versus frequency and from sweep to sweep => Phase coherence

Sweep 1

Sweep 2

Harmonic Phase Reference

The LSA requires two phase reference modules:

- One phase reference module is used to maintain a static cross-frequency phase relationship.
- A second phase reference standard is used to calibrate the cross-frequency phase at the device reference plane.

AMCAD HPR727A can generate signals up to 26.5GHz at frequency intervals as small as 10MHz.

When the phase reference is driven with *Fin* frequency, it generates * *Fin* at the output.

AMCAD & R&S ZNA Large Signal Application

DED

The transmission term $\frac{e_{01}}{e_{32}}$ is calculated from the thru measurement. Using the assumption that the thru is reciprocal $(S_{12} = S_{21})$ it can be shown that [5]:

$$\frac{e_{01}}{e_{32}} = \pm \sqrt{\frac{S_{12M}(e_{00}e_{11} - \Delta_X)}{S_{21M}(e_{22}e_{33} - \Delta_Y)}} \tag{1}$$

$$\begin{bmatrix} b_1 \\ b_2 \\ a_1 \\ a_2 \end{bmatrix} = \frac{1}{e_{01}} \begin{bmatrix} 1 & 0 & -e_{00} & 0 \\ 0 & k & 0 & -ke_{33} \\ e_{11} & 0 & -\Delta_X & 0 \\ 0 & ke_{22} & 0 & -k\Delta_Y \end{bmatrix} \begin{bmatrix} b_0 \\ b_3 \\ a_0 \\ a_3 \end{bmatrix}$$

$$|e_{01}|^{2} = \frac{|b_{0}e_{11} - a_{0}\Delta_{X}|^{2} - |b_{0} - a_{0}e_{00}|^{2}}{P_{meter}}$$
$$\varphi(e_{01}) = \varphi\left(\frac{b_{0} - b_{0}\Gamma_{R}e_{11} - a_{0}e_{00} + a_{0}\Delta_{X}\Gamma_{R}}{a_{R}}\right)$$

where P_{meter} is the power measured by the power meter, a_R the incident wave and Γ_R the reflection coefficient of the phase reference.

Coaxial Calibration

• 3 steps Calibration :

DE

• Full 2 Port Calibration

Coaxial Calibration

• 3 steps Calibration :

• Full 2 Port Calibration

On Wafer Calibration

• 4 steps Calibration :

• Full 2 Port Calibration

DA

RF & Microwave solutions

On Wafer Calibration

- 4 steps Calibration :
- Full 2 Port Calibration

SOL Calibration

Tuner Auto De-embedding

DET

Energy Efficiency

- Radio Frontend (RFFE) performance is defined by 4 headline parameters:
 - Output Power
 - Bandwidth/Frequency
 - Linearity
 - Efficiency
- The first three of those are governed or dictated by specification or regulation
- Efficiency is the market differentiator.
- In battery powered applications, it drives time between-charges, in prime- or higher-powered applications, it drives cooling requirements; size and weight.

Maximum Efficiency of Transistor

Continuous Mode: Class A, AB, B & C based on Biasing point

A DEED

Maximum Efficiency of Transistor

Switching Mode : Class F, E, J ... Harmonics controlled

DE

Maximum Efficiency of Transistor

Harmonics Load-Pull measurement, over a range of bias condition can explore the device efficiency potential to find the best design topology.

Harmonic VRLP ... when?

- Amplifiers operating under linear (small signal) conditions **do not** produce power at harmonic frequencies, and the output power of a device under test is **linearly proportional** to its input power.
- Highest efficiency is achieved under non-linear (large signal) conditions. Highly non-linear PAs operating in advanced classes (E, F, G, J and their inverses) are commonly used in modern wireless communication systems.
- Amplifiers operating under non-linear (Large signal) conditions **do** produce power at harmonic frequencies, and the output power of a device under test is **non-linearly proportional** to its input power.

Harmonic VRLP -> Wide band amplifiers

It may occur harmonic frequencies (2fo, 3fo...) of the lower frequency band overlap a fundamental frequency in the middle or upper portion of the frequency band.

For a fundamental frequency of, a theoretical ClassF amplifier would require a short at the second and an open on the third harmonic. This will yield in low performance for second- and third fundamental frequencies.

Harmonic LP, does it have effect?

PAE Fundamental plus f2 and f3 harmonic LP

Increase of PAE of 14% by tuning f2 and f3 on optimum load

How to control Γιoad Harmonics

- Harmonic Load Pull with passive tuner

 One mechanical tuner per frequency
 - To tune f0, 2f0 & 3f0 at the same time = 3 tuners

- Filters use to separate the f0 & harmonics signal
 - f0 & harmonics may be tune independently
 - ☑ Triplexer as filter
 - f0 = low pass filter
 - 2f0 = band pass
 - 3f0 = high pass filter

- Multiple states produce any specified f0 impedance & variety of f2, f3 impedances
- Robust and advanced algorithm to achieve the combination targetted

How to control Γιoad Harmonics

DE

Harmonic Tuning Method	Advantages	Disadvantages			
Multiplexer	 High tuning isolation 	 Insertion loss due to the triplexer, reduced matching range Triplexer has to be characterized in S-parameters / narrow band 			
Cascaded Tuner	 Operates over full tuner BW with no setup changes No loss in front of any tuners Fast measurements 	 Less tuning isolation 			

Cascaded Harmonic Tuner

With harmonic tuners loads for f0, f1 and for a three-stage tuner also f2 independently controlled

Harmonic passive & hybrid active VRLP & Microwave solutions

Advantage: Available (2-port VNA's) like ZVA / ZNA can be used with Harmonic tuners

Maximum reflection of f2 and/or f3 depends on combination of device and setup.

The use of an amplifier overcome losses and the outside of the Smith chart can be reached. Recommended for high power devices

Hybrid active harmonic VRLP with 4-Port ZNA

Power and phase can be controlled independently with a ZNA with four sources. Fundamental control using passive tuners and harmonics using active injection (hybrid load pull)

Advantages:

- No extra investments are required for harmonic tuner tuners
- No extra investments are required for extra sources.
- Most power is handled by passive fundamental tuner. Therefore, very suitable for high power devices.
- Very flexible and stable one-box solution.

Active harmonic VRLP with R&S **4-Port ZNA**

Advantages:

٠

•

Fully active impedance control using multiple signal generators and load amplifiers (active load pull)

Depending on the output power of the DUT, a high-power amplifier may be required to tune the load for f0 at high gammas!

Harmonic LP to maximize Efficiency

- Multiple load-pull measurements for PAE optimization:
 - 1. Swept impedances at f_0 ; $2f_0$ and $3f_0$ fixed at 50 Ω
 - 2. Swept impedances at $2f_0$; f_0 fixed for optimum PAE at $3P_{3dB}$, $3f_0$ fixed at 50Ω
 - 3. Swept impedances at $3f_0$; f0 and $2f_0$ fixed for optimum PAE at $3P_{3dB}$
 - 4. Swept impedances at f_0 ; $2f_0$ and $3f_0$ fixed for optimum PAE at $3P_{3dB}$
- Measurements performed at the transistor package plane

Waveform Engineering

At RF and microwave frequencies, such conditions can be achieved using current and voltage waveform shaping at the drain level.

Thanks to the understanding **waveform shaping**, **designers have now widely adopted Power Amplifier (PA) design methodologies** which employ high efficiency class of operating conditions, such as Class F or inverse Class F amplifiers

Waveform Engineering & Behavioral Modelling request cross-harmonics phase relationship

Port 4 Port 2 Port 3 Advanced Modeling for Computer-Aided Design **Maury** Microwave

Your Calibration, Measurement & Modeling Solutions Partner!